
↳the
singlenaturSystems

①

abstraction of a device
or medium that store info

#assicalinformation ↓
~

Assumewehavaclassicalsystem,thalassical
states

.

-

↳
a configuration which can be described

& recognized unambiguously.

Examplesbit-states = 30
,
13 frealized by

, c)
② A dice -> states = 20

,
1

,
2
,

3
, 4 ,

3
,
63

③ DNA nucleobase -> states = &A
,

C
,
G

, T3

#-> the set of states defines the classical system .



Let's introduce some notation :
②

· We label the system with X

We use & to denote the set of states
associated with X

↓

Assumptions
is non-empty

->E is finite

↳ not strictly necessary
butI wekeep

this assumptiona

We call
any
finite non empty set a

" classical state set "

M - Many different physical devices can

have the same classical state set.



Sometimes we might now the ③

state of X

↳ But
,

often our knowledge of X is uncertain !

↳ in this case we represent our knowledge

ofassigning probabilitiesa set

↳ this gives
us a "probabilistic state"

Example :

Given some past information we might know
that with probabilityIn a

bit X is in state 0.

and with probability is it is in
state 1

.

G Pr(x = 0) = 34 Pr(x = 1) = 4

↳ convenient notation :

(4)0



This is naturally generalizedd. ④

↳
any probabilistic

state of a classical system
can be represented by a rector of probabilities .

↓ We
getIchoose theorderinganthere are

conventions

so,anyprobabilisticstatecaSupre
se

0 All entries are non-negative /"Probabil,② Entries sum to 1
.

these
canConveyanycolumnracterstistyaof a probabilistic

state(

Why summ vectors ?

↳ Gives as a convenient way
to

representions !



Measuring-probabilisticstates ⑤

What do we mean by "measure" ??
↳ to measure means to "look" at the system
B mambiguously recognize which classical

state it is in
.

& - se never "see" a system in a probabilistic state.

↳ measurement always yields one state !

Measurement changes the state of a system
Example :

Fair dice in a box dice on
the table

#



It's helpful now to introduce some ⑥
new notationn...

↳ Given
any system ra denote the probability

ractor having a
1 for state a with 19)

↓

Example: A bit "Ket a
"

10 = (b) (17 = (i)

Example: A dice

(1) = (0) 127 = (i) .. recalthisus
"

#e : These "certain states" are
a tafor

↳
We can express any probabilistic vactor as a

linear combination of these states



Let's do another example in this notation...

40 We flip a coin &co without looking -

hads" (t) = Elheads + Eltails on

② We uncor the coin and look (ie we "measure

↳ Wasee either heads or tails

-> state becomes Iheads) =(b) or Hails) =(i)

③ Note : if we core the coin
again

then

uncover it
,

the classical state

remains the same !

#te : When the state of a classical system is

un known our I knowledge of the system
is represented by a probabilistic state.↳different observes can have different knowlege.



Classical serations ⑧
--

① Derministicoperations
& I some

fid w & such that each af

goes
to flat

Example:bit

27 only for such
functions NOT

lI
L L

constant #balanced constant

!Identity : fal = a

Action of deterministic operations can be

represented by matrix-rectr multiplication...

6 f : Er & 7 Mst M1a) = Ifcas]

M
.

= (00) Me = (ii) Ms = (ib)a
= 100%



* Matrices which represent deterministic @

functions always have entries
ony

lo00 .

& there , sonly a single 1 in each column.

->

Again he can introduce some convenient

notationn...

"Kcta"
c

Recall 197 is theturn rector with 1 for a

land zoo's elsewher

&.
Now <al is

the analagousrector
↓

"bra a "

Euphiti, (01 = 10

(x = (i)
< 1) = (01)



Now note
,

for
any

states a, be a ⑳

& 1674a) is the matrix with the

2 only non-zer entry being rowb column

102(1) = ( 10)(i) = (8 % )
!! -

standard matrix multiplication

Using
this notation

,

for
any
fire

we can write M via

M
=&Ifcasal - how

Well
,
<allb) is the iner product.

& Calb) = 3 a =% (d) conte



All together we have : ⑪

M1b) : (Clfcal) I
= [ 1f())< 1b)

at E

· Calfast das
= If(b)) -> perfect.

↳
Wa have now

learned "Bra "Kat" notation !

↓
↑

important to ba
2entmovingdeammt



Primalisticoperai& StorasticMatrices
⑫

Example JA bit again)
↳ Imagine a process

where :

· if 0 m left alone

· if 1 - bit flipped with

I probability t

M = (b )
= 107601 +Kloc(hi

#

Check : M10) = 107 Dothisbrak
ane

M/1 = 107 + E11 ( (
M is a stochasticmatrix

I all entries an non-negative real numbers
-> Entries in

every
column sum to 1

Can represent all probabilistic operations.



Probabilistic operations are those in ⑬
which randomness is used or introducedd...

Note : each column can be viewed as the

output probabilistic state corresponding
to a specific input state

0 1

M =

(j) oco thi
Note :

Stochastic matrices are precisely
the matrices which map probability
rectors to probability rectors !

Note Sif and only if "I
↳ Wecanview polilisticoperatioas an

a

(2) = x(bi) + z(bb)
-> always possible !



↳imprintof Plasticoperating ⑭

Imagine X
,
with state set &

,

& probabilistic
operations M

.,
M

. . . . ,
Mm and initial state u,

2 Applying Mi than My re get

Mj(Min) = MyMin
-

↓

[
matrix multiplication

preserves "stochasticity"
More generally applying M

.,
then Mu

, ... ,

them Mu

is reprsented by the matrix product

2 MrMa
..... MzM,

#B : order matters ! Matrix multiplication
is not commutativ

AB = BA !



QuantumInformation ⑮

Some continua with finite non-empty systems
↳ Classical State Quantum State

probablyo
- Quantum stab

rector

"First postulatea (mestatectorclassical states of the
system ,

but

7
· Entries of a quantum staterector accomplex

absolutevalues squad -

7)Recall for a classical state rector

· entries are non-negative real number]
· entries sum to 1

Theseathol)



Given a rect ve
1
Enclidian

norm 11v1:
Listi

=1

Ex : Quantum state vectors an
unit vectors

with espect to the Enclidian norm
.

2
examples



⑰
Example :Anqubit ( "quantum bit"
· 2 = 20 , 13 just like a

bit

· But different states an possible
standard basis (0) = 10)vectors an Ivalidqun () = 11

I=[()= 10+

T
[t)= 10 - 33(1

(i)(i) +=+
quantum state rocksanmplex liner combinations
of standard basis rectors.nee
↳position"



Sometimes we want to
give

a quarter ⑱

state rector a name
,

to do this re

normally write -
1Ck + (B4 = 1

14 = <107 + Blix

Then an
also some states which an

veryuseful n get their own names

1 + )= (0 + /i

1 - = Y() - Yalk

Note : Let E = Ea , . . .

, and

& F 14) we have that (alt) = a
:

Do this matrickcolumnExample : 2 = 20 , 13 · braket !

147= 10 -2 = (t]
<01): <114)=2



Important ⑲
-

↳ for a classical statewater (v =

(i)
rehad < Vl = (v

. +2)

In the Enspose
↳ for a quantum state

rector 14),

the be(t) is
the Cinnamatetranspose

of H)

Eg : (4)=10-1:
<4)=Ricol - 24)=



So far he have looked at ⑳

quantum states of a
bit - is qubit states

1.
But we can have quantum states

of
any

classical state set E

Epste
a

142 =

Go & complex !

In general lut) =Stal,
↳ CH)
-



There is one type of quarter
⑪

state we will encomber often...

uniform

&
14)a

superposition
↓

ta=g for all at S

Note : Braket notation allows us to

not specify ordering
of indices

Z much mor convenient

H

=lFinstremember : (alb) = Gab



Meetingquantum states ⑫

↳ For now we focus on one simpletype
of measurement

& "standard basis measurement"

-> When a measurement is made the observe

will see a classical state

↳Measurements an
how he extract

information from quantum states !
-

-> ta =<alt)
So

, give 1) = C talahaha = 1

1
a
measurement will yield (a) I

with probability Ha
&



=

Example ⑬

(t = y() + Yz()

↓ Measure

Eloutcome = c) = ( < 01 +)1 = E

PrCoutcome = 1) = 1 < 1 / + >12 = 2

Ne : We have the suma probabilities
for 1-2 = /10- Yall)

1
We cannot tell apart It &17 using
standard basis measurements !

Note :

measuring any
standard basis stak

(a) Yields 197 with certainty



Whdone need quatm statea

Lo Given 1 =

(T) why not just
use

the

purelyclassicalstill
state rater !

#ve : The set of allowed operations
is different !

↳ classical operations : stochastic metres

classical stateI classie

->
Quantum operations

quantum statem quartet
-unitaBrix



what are the properties of mitory matrices?
· A

square
matrix is unitary if
aut = 1 identity matrix
ut = 1
W

conjugatespose C-
ut= "T E implies H = ut

Note : Unitary
matrices

preserve
enclidian

norm

1 2#
therefore mitaymate takeua

(They an exactly the seloflineamas



Now, he have sore important unitary operations
!

① Pauli Operations

1) = (0) wa = (ii) o
:

(j) = (i)
It

X Y 2

# : X is sometimes called NOT

&
x 10) = 11) X (1) = 10)

2 is called phasflip
210) = 10) 2/1 = 11)

⑧ Hadamard

H=
③ Phase operations - S = P = (i)

Po = (0) T- P = (i)
-> I = P

. &z : Pr



Lets explor the Hadamad gale mor carefully.

n =

(
fn= n

-)
=

(*) =
Also

,
one can check

H11x = 1 - >
we can use this

HIL = 1 t)

S to

bysouthasM(t) = 10)

H1 - ) = (1)



ine we have a qubit prepared
aImag

either in 1+) or 1-2

↳ remember that
measuring

both of

these states in
the standard basis

gives PrCoutcome =0) = PrCoutcome = 1) =1

↳ we can't tell them apart !
Che get no useful information

But
,

ifre apply aMadamard then

measure we can tell them apart !

H It = 10)
sure

10) with Pr 1

H1-) = 11) measu 117 with Pr1

It -1- can be perfectly discriminated
↳ changing phases can be significant !



TI = T((() +Y ")) ⑭

-T + T
=((

= (d) + (ii)
I

Note
,

th action on basis states

Iknow y (because of linearity !)

Gm(k(0) + (i) ]) (El
=

In H10) + di
=Y(z +

(
=(((0) +k()) +( - E )

-

(2(10) +(
We can use either method !



Cisitionunitary operations
& Matrix multiplication as before !

Ep : R = MSH :

(
NOT↳ not R2 = * =

(ii)
↳

R =

square
root of X

↳ This is not possible classically !


